Processing math: 100%
Subalgebra A31+A21E16
25 out of 119
Computations done by the calculator project.

Subalgebra type: A31+A21 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A31 .
Centralizer: A11 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A15
Basis of Cartan of centralizer: 2 vectors: (0, 1, 0, 0, 0, 0), (1, 0, -1, 0, 1, -1)
Contained up to conjugation as a direct summand of: A31+A21+A11 .

Elements Cartan subalgebra scaled to act by two by components: A31: (2, 3, 4, 6, 4, 2): 6, A21: (1, 0, 1, 0, 1, 1): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g29+g30+g31, g7g11
Positive simple generators: g31+g30+g29, g11+g7
Cartan symmetric matrix: (2/3001)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (6004)
Decomposition of ambient Lie algebra: V2ω1+2ω22Vω1+2ω22V2ω1+ω22V3ω1V2ω24Vω1+ω22V2ω12Vω22Vω14V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+ω2+2ψ1+6ψ2V2ω1+ω2+6ψ2Vω2+6ψ2Vω1+ω22ψ1+6ψ2Vω1+2ω2+2ψ1V3ω1+2ψ1V4ψ1V2ω1+2ω2Vω1+2ψ1V2ω22V2ω1Vω1+2ω22ψ1V3ω12ψ12V0Vω12ψ1Vω1+ω2+2ψ16ψ2V2ω1+ω26ψ2V4ψ1Vω26ψ2Vω1+ω22ψ16ψ2
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 22) ; the vectors are over the primal subalgebra.g2h6+h5h3+h1h2g2g16+2g15+g12g20+2g19+g17g6+g3g5+g1g31+g29g30g21g25g18g22g11+g7g35g36g32g33g24g27g34
weight0000ω1ω1ω2ω22ω12ω1ω1+ω2ω1+ω2ω1+ω2ω1+ω22ω23ω13ω12ω1+ω22ω1+ω2ω1+2ω2ω1+2ω22ω1+2ω2
weights rel. to Cartan of (centralizer+semisimple s.a.). 4ψ1004ψ1ω12ψ1ω1+2ψ1ω26ψ2ω2+6ψ22ω12ω1ω1+ω22ψ16ψ2ω1+ω2+2ψ16ψ2ω1+ω22ψ1+6ψ2ω1+ω2+2ψ1+6ψ22ω23ω12ψ13ω1+2ψ12ω1+ω26ψ22ω1+ω2+6ψ2ω1+2ω22ψ1ω1+2ω2+2ψ12ω1+2ω2
Isotypic module decomposition over primal subalgebra (total 21 isotypic components).
Isotypical components + highest weightV4ψ1 → (0, 0, -4, 0)V0 → (0, 0, 0, 0)V4ψ1 → (0, 0, 4, 0)Vω12ψ1 → (1, 0, -2, 0)Vω1+2ψ1 → (1, 0, 2, 0)Vω26ψ2 → (0, 1, 0, -6)Vω2+6ψ2 → (0, 1, 0, 6)V2ω1 → (2, 0, 0, 0)Vω1+ω22ψ16ψ2 → (1, 1, -2, -6)Vω1+ω2+2ψ16ψ2 → (1, 1, 2, -6)Vω1+ω22ψ1+6ψ2 → (1, 1, -2, 6)Vω1+ω2+2ψ1+6ψ2 → (1, 1, 2, 6)V2ω2 → (0, 2, 0, 0)V3ω12ψ1 → (3, 0, -2, 0)V3ω1+2ψ1 → (3, 0, 2, 0)V2ω1+ω26ψ2 → (2, 1, 0, -6)V2ω1+ω2+6ψ2 → (2, 1, 0, 6)Vω1+2ω22ψ1 → (1, 2, -2, 0)Vω1+2ω2+2ψ1 → (1, 2, 2, 0)V2ω1+2ω2 → (2, 2, 0, 0)
Module label W1W2W3W4W5W6W7W8W9W10W11W12W13W14W15W16W17W18W19W20W21
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g2
Cartan of centralizer component.
h6+h5h3+h1
h2
g2
g16+2g15+g12
g172g19+g20
g20+2g19+g17
g12+2g15g16
g6+g3
g1+g5
g5+g1
g3+g6
Semisimple subalgebra component.
g31g30g29
2h6+4h5+6h4+4h3+3h2+2h1
2g29+2g30+2g31
g31+g29
h63h54h43h32h2h1
2g292g31
g21
g14
g9
g22
g25
g10
g13
g18
g18
g13
g10
g25
g22
g9
g14
g21
Semisimple subalgebra component.
g11g7
h6+h5+h3+h1
2g72g11
g35
g16+g15g12
2g17+2g19+2g20
6g36
g36
g20+g19g17
2g122g152g16
6g35
g32
g6g3
g28
2g26
g1+g5
2g33
g33
g5g1
g26
2g28
g3+g6
2g32
g24
g8
g16+g12
g17g20
2g4
2g27
g27
g4
g20+g17
g12+g16
2g8
2g24
g34
g11+g7
g31+g29
2g23
h6+h5h3h1
2g23
2g29+2g31
2g72g11
4g34
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above000ω1
ω1
ω1
ω1
ω2
ω2
ω2
ω2
2ω1
0
2ω1
2ω1
0
2ω1
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
2ω2
0
2ω2
3ω1
ω1
ω1
3ω1
3ω1
ω1
ω1
3ω1
2ω1+ω2
ω2
2ω1ω2
2ω1+ω2
ω2
2ω1ω2
2ω1+ω2
ω2
2ω1ω2
2ω1+ω2
ω2
2ω1ω2
ω1+2ω2
ω1+2ω2
ω1
ω1
ω12ω2
ω12ω2
ω1+2ω2
ω1+2ω2
ω1
ω1
ω12ω2
ω12ω2
2ω1+2ω2
2ω2
2ω1
2ω1+2ω2
0
2ω12ω2
2ω1
2ω2
2ω12ω2
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer4ψ104ψ1ω12ψ1
ω12ψ1
ω1+2ψ1
ω1+2ψ1
ω26ψ2
ω26ψ2
ω2+6ψ2
ω2+6ψ2
2ω1
0
2ω1
2ω1
0
2ω1
ω1+ω22ψ16ψ2
ω1+ω22ψ16ψ2
ω1ω22ψ16ψ2
ω1ω22ψ16ψ2
ω1+ω2+2ψ16ψ2
ω1+ω2+2ψ16ψ2
ω1ω2+2ψ16ψ2
ω1ω2+2ψ16ψ2
ω1+ω22ψ1+6ψ2
ω1+ω22ψ1+6ψ2
ω1ω22ψ1+6ψ2
ω1ω22ψ1+6ψ2
ω1+ω2+2ψ1+6ψ2
ω1+ω2+2ψ1+6ψ2
ω1ω2+2ψ1+6ψ2
ω1ω2+2ψ1+6ψ2
2ω2
0
2ω2
3ω12ψ1
ω12ψ1
ω12ψ1
3ω12ψ1
3ω1+2ψ1
ω1+2ψ1
ω1+2ψ1
3ω1+2ψ1
2ω1+ω26ψ2
ω26ψ2
2ω1ω26ψ2
2ω1+ω26ψ2
ω26ψ2
2ω1ω26ψ2
2ω1+ω2+6ψ2
ω2+6ψ2
2ω1ω2+6ψ2
2ω1+ω2+6ψ2
ω2+6ψ2
2ω1ω2+6ψ2
ω1+2ω22ψ1
ω1+2ω22ψ1
ω12ψ1
ω12ψ1
ω12ω22ψ1
ω12ω22ψ1
ω1+2ω2+2ψ1
ω1+2ω2+2ψ1
ω1+2ψ1
ω1+2ψ1
ω12ω2+2ψ1
ω12ω2+2ψ1
2ω1+2ω2
2ω2
2ω1
2ω1+2ω2
0
2ω12ω2
2ω1
2ω2
2ω12ω2
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M4ψ1M0M4ψ1Mω12ψ1Mω12ψ1Mω1+2ψ1Mω1+2ψ1Mω26ψ2Mω26ψ2Mω2+6ψ2Mω2+6ψ2M2ω1M0M2ω1M2ω1M0M2ω1Mω1+ω22ψ16ψ2Mω1+ω22ψ16ψ2Mω1ω22ψ16ψ2Mω1ω22ψ16ψ2Mω1+ω2+2ψ16ψ2Mω1+ω2+2ψ16ψ2Mω1ω2+2ψ16ψ2Mω1ω2+2ψ16ψ2Mω1+ω22ψ1+6ψ2Mω1+ω22ψ1+6ψ2Mω1ω22ψ1+6ψ2Mω1ω22ψ1+6ψ2Mω1+ω2+2ψ1+6ψ2Mω1+ω2+2ψ1+6ψ2Mω1ω2+2ψ1+6ψ2Mω1ω2+2ψ1+6ψ2M2ω2M0M2ω2M3ω12ψ1Mω12ψ1Mω12ψ1M3ω12ψ1M3ω1+2ψ1Mω1+2ψ1Mω1+2ψ1M3ω1+2ψ1M2ω1+ω26ψ2Mω26ψ2M2ω1ω26ψ2M2ω1+ω26ψ2Mω26ψ2M2ω1ω26ψ2M2ω1+ω2+6ψ2Mω2+6ψ2M2ω1ω2+6ψ2M2ω1+ω2+6ψ2Mω2+6ψ2M2ω1ω2+6ψ2Mω1+2ω22ψ1Mω1+2ω22ψ1Mω12ψ1Mω12ψ1Mω12ω22ψ1Mω12ω22ψ1Mω1+2ω2+2ψ1Mω1+2ω2+2ψ1Mω1+2ψ1Mω1+2ψ1Mω12ω2+2ψ1Mω12ω2+2ψ1M2ω1+2ω2M2ω2M2ω1M2ω1+2ω2M0M2ω12ω2M2ω1M2ω2M2ω12ω2
Isotypic characterM4ψ12M0M4ψ1Mω12ψ1Mω12ψ1Mω1+2ψ1Mω1+2ψ1Mω26ψ2Mω26ψ2Mω2+6ψ2Mω2+6ψ2M2ω1M0M2ω1M2ω1M0M2ω1Mω1+ω22ψ16ψ2Mω1+ω22ψ16ψ2Mω1ω22ψ16ψ2Mω1ω22ψ16ψ2Mω1+ω2+2ψ16ψ2Mω1+ω2+2ψ16ψ2Mω1ω2+2ψ16ψ2Mω1ω2+2ψ16ψ2Mω1+ω22ψ1+6ψ2Mω1+ω22ψ1+6ψ2Mω1ω22ψ1+6ψ2Mω1ω22ψ1+6ψ2Mω1+ω2+2ψ1+6ψ2Mω1+ω2+2ψ1+6ψ2Mω1ω2+2ψ1+6ψ2Mω1ω2+2ψ1+6ψ2M2ω2M0M2ω2M3ω12ψ1Mω12ψ1Mω12ψ1M3ω12ψ1M3ω1+2ψ1Mω1+2ψ1Mω1+2ψ1M3ω1+2ψ1M2ω1+ω26ψ2Mω26ψ2M2ω1ω26ψ2M2ω1+ω26ψ2Mω26ψ2M2ω1ω26ψ2M2ω1+ω2+6ψ2Mω2+6ψ2M2ω1ω2+6ψ2M2ω1+ω2+6ψ2Mω2+6ψ2M2ω1ω2+6ψ2Mω1+2ω22ψ1Mω1+2ω22ψ1Mω12ψ1Mω12ψ1Mω12ω22ψ1Mω12ω22ψ1Mω1+2ω2+2ψ1Mω1+2ω2+2ψ1Mω1+2ψ1Mω1+2ψ1Mω12ω2+2ψ1Mω12ω2+2ψ1M2ω1+2ω2M2ω2M2ω1M2ω1+2ω2M0M2ω12ω2M2ω1M2ω2M2ω12ω2

Semisimple subalgebra: W_{8}+W_{14}
Centralizer extension: W_{1}+W_{2}+W_{3}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00): (350.00, 300.00)
1: (0.00, 1.00, 0.00, 0.00): (200.00, 400.00)
2: (0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
3: (0.00, 0.00, 0.00, 1.00): (200.00, 300.00)



Made total 825441 arithmetic operations while solving the Serre relations polynomial system.